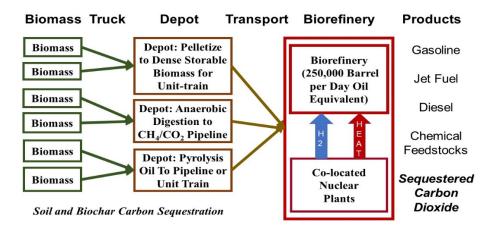
Can a Nuclear Biofuels System Enable Liquid Biofuels as the Economic Low-carbon Replacement for All Liquid Fossil Fuels and Hydrocarbon Feedstocks and Enable Negative Carbon Emissions?

Three Wednesday Webinars (No Registration Fee): 10:00 am-1:30 pm EST; August 4, 11 and 18


C. Forsberg^{*}, B. Dale¹, D. Jones² and L. M. Wendt³

 *Massachusetts Institute of Technology, Cambridge, MA, 02139, <u>cforsber@mit.edu</u> ¹Michigan State University, East Lansing, MI, <u>bdale@egr.msu.edu</u>
²North Carolina State University, Raleigh, NC 27695, <u>dsjones5@ncsu.edu</u>
³Idaho National Laboratory, Idaho Falls, ID, <u>lynn.wendt@inl.gov</u>

A workshop is being organized to address the question: *Can a nuclear biofuels system enable liquid biofuels as the economic low-carbon replacement for all liquid fossil fuels and chemical industry hydrocarbon feedstocks where nuclear energy provides the low-carbon heat and hydrogen at the biorefinery?*

Lignocellulosic biomass has long been used as an energy source but it is also a source of renewable carbon that can be converted into hydrocarbon fuels. If external heat and hydrogen from nuclear plants are provided to the biorefinery, rather than using biomass as both the heat and hydrogen source, the energy content of the biomass-derived hydrocarbon fuels can be more than double the energy content of the biomass itself. External energy inputs from a nuclear plant enable (1) a much smaller land base to supply the necessary biomass for a desired amount of biofuels and (2) using biological carbon sources that are poor fuels to provide the necessary carbon. External heat and hydrogen (1) becomes the enabling mechanism for biomass to replace crude oil for a fast transition off fossil fuels and (2) may be 15% of total U.S. energy consumption—the second biggest nuclear market after electricity.

System economics require very large biorefineries (equivalent to 250,000 barrel/day oil refineries). Large biorefineries in turn require (1) conversion of locally-produced biomass within intermediate processing facilities called "depots" into energy-dense storable intermediates that can be economically shipped from these depots to the biorefineries and (2) massive low carbon, concentrated energy inputs at the biorefinery that are only available from nuclear power or fossil fuels with carbon capture and sequestration. Large refineries enable a variable product slate with time including variable carbon dioxide for sequestration depending upon market prices for liquid fuels and negative carbon emissions. A simplified system schematic is shown below.

Web Registration Site (No Fee): https://nuc1.inl.gov/SitePages/Nuclear%20Biofuels%20Workshop.aspx

Organization: Series of talks with questions and discussions on specific subjects after each speaker with crosscutting discussions after all of the speakers in the session.

System Design (Webinar 1: August 4, 2021: 10 am to 1:30 pm EST)

Welcome (10:00 am): The Challenge. Charles Forsberg (Massachusetts Institute of Technology) and Bruce Dale (Michigan State University):

Modern civilization exists because of the remarkable properties of liquid fossil fuels—affordable, easily stored, dense energy source that are easy to transport. It is the chemical form of liquid fossil fuels $[(CH_2)_x]$ that creates these properties. The problem is that the burning of fossil fuels adds carbon dioxide to the atmosphere that drives climate change. Biomass can provide an alternative source of carbon. Because plants remove carbon dioxide from the air, burning biomass does not change the carbon dioxide content of the atmosphere. The question is: Can we fully replace fossil hydrocarbons using carbon from biomass? If we can accomplish this, the proposed nuclear biofuels system provides a fast route to decarbonization because we do not have to rebuild the entire energy infrastructure from transportation to industry to home heating.

- 1. *Roadmap (10:10 am)*. Charles Forsberg (Massachusetts Institute of Technology): Roadmap for Replacing Liquid Fossil Fuels and Chemical Plant Feedstocks with a Low-Carbon Nuclear Biofuels System
- 2. *Availability of Biomass as a Carbon Source (10:40 am)*. Bruce Dale (Michigan State University): U.S. Biomass Feedstock Resources vs Price with consideration of unconventional feedstocks
- 3. *Carbon Dioxide Sequestration and Negative Carbon Emissions (11:10 am)*. Howard Herzog (Massachusetts Institute of Technology): Cost and Constraints of Carbon Dioxide Sequestration

Break: 11:40 am - 12:00

- 4. *Feedstocks and Utilities Supply and Quality for the Biorefinery (12:00 am)* Richard Boardman (Idaho National Laboratory): The biomass and hydrogen/electricity suppliers have business requirements that must be balanced with the business needs of the biorefinery.
- 5. *Conversion of Biomass to Digestate, Methane and Carbon Dioxide (12:30 am).* Hassan Loutfi (Roeslein Alternative Energy): Biomass and other biological wastes are converted to biomethane and carbon dioxide by anaerobic digestion of biomass at the depot (local) level for pipeline shipment to the biorefinery. It is a commercial technology with a commercial route to liquid fuels.
- 6. *Roundtable Discussion with Audience Participation (1:00-1:30):* Discussion Lead: Charles Forsberg. Can we use markets to address variable biomass feedstock costs, fuel demand and demand for negative carbon emissions? How do we standup a system that requires depots and biorefineries? What policies would accelerate the demonstration and commercialization of the technologies?

Biomass Supply Chain to the Refinery (Webinar 2: August 11, 2021; 10 am to 1:30 pm EST)

Welcome (10:00 am). Lynn Wendt (Idaho National Laboratory): The biomass supply chain is from the farm/forest to the nuclear biorefinery front gate. The depot converts low-density biomass into a high-density, storable, shippable product. However, it has other impacts. Depot processes generate secondary streams that in many cases enable recycle of nutrients back to farm and forest to improve long-term sustainability and soils.

- 7. *Refinery Economics and Operations (10:10 am)*. Pingping Sun (Argonne National Laboratory): The system design has depots shipping to the refinery because of the capabilities of large biorefineries. Half of any biorefinery will look like today's refinery. We need to understand refineries.
- 8. Depot Processing Options: Managing Variability through Fractionation, Merchandising, Formulation (10:40 am). Richard Hess (Idaho National Laboratory): Depot preprocessing options for economically transportable and storable feedstocks that meet cost and quality specifications for the biorefinery.
- 9. *Wet versus Dry Biomass Intermediate Products (11:10 am).* Lynn Wendt (Idaho National Laboratory): Wet versus dry storage and transport of biomass: what are the options and constraints? Woody versus non-woody biomass: options and constraints?

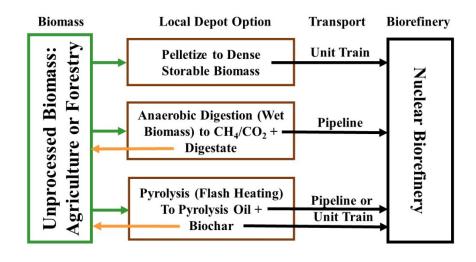
Break: 11:40 am - 12:00 pm

- 10. *Carbon-Negative Electrobiofuels from Regional Pyrolysis Depots (12:00 pm)*. Christopher Saffron (Michigan State University): Fast pyrolysis in small-scale rural depots densifies biomass in the form of biooil, a mixture of organic oxygenates and water.
- 11. *Transportation from Depot to Biorefinery (12:30).* Daniela Jones (North Carolina State University): Logistics Costs and Challenges for Large-Scale Biofuels: Truck, Train, Pipes, and Barge. Transportation drives system design because it is uneconomic to transport low-density biomass long distances to large nuclear biorefineries. What are the economics and constraints?
- 12. *Roundtable Discussion with Audience Participation (1:00 pm)*: Discussion Lead: Lynn M. Wendt. What is the commercialization strategy for the depots? What are the tradeoffs between agriculture and biomass fuels? What policies would strengthen agricultural sustainability given the capabilities of some depot options?

Nuclear Biorefinery Options (Webinar 3: August 18, 2021: 10 am to 1:30 pm EST)

Welcome (10:00 am). Charles Forsberg (Massachusetts Institute of Technology): The nuclear biorefinery converts feedstocks to hydrocarbon fuels with massive inputs of heat and hydrogen. What are the options—both inputs (heat and hydrogen) and the refinery?

- 13. *Nuclear Hydrogen Production (10:10 am)*. Eric Ingersoll (LucidCatalyst): Nuclear hydrogen may be the low-cost production option. The biorefinery requires massive amounts of heat and in some cases oxygen.
- 14. *Hydrogen Production with Carbon Capture and Storage (10:35 am)*. Addison Cruz (Honeywell UOP): Hydrogen production from natural gas combined with sequestration of carbon dioxide


- 15. *Ethanol Upgrading to Hydrocarbon Fuel Blendstocks (11:00 am)*. John Hannon (Vertimass): Ethanol to hydrocarbons route via the Guerbet ethanol oligomerization reaction.
- 16. *Direct Hydrodeoxygenation of Lignocellulosic Biomass to Hydrocarbons (11:25 am)*. Ana Rita C. Morais (University of Kansas): Conventional catalysts can convert biomass directly to fossil fuel equivalents via hydrodeoxygenation.

Break: 11:50 am - 12:10 am

- 17. *Fisher-Tropsch Technology for synthetic products (12:10 pm)*. Svetlana van Bavel (Shell Global Solutions International B.V.): The Gas-to-Liquids / Fischer-Tropsch process can convert almost any carbon-containing feedstock (including biomass, waste, CO2 and power) into synthetic fuels and chemical products
- 18. *Matching Nuclear Reactors to Biorefinery Requirements (12:35 pm)*. Speaker TBD: Different nuclear biofuels systems have different temperature and size requirements that drive preferred rector choices.
- **19. Roundtable Discussion with Audience Participation (1:00 pm).** Discussion Lead: Charles Forsberg. What does the nuclear biorefinery look like? What is the transition path? Can we incrementally expand existing refineries and convert to nuclear biorefineries over time?

Additional Resources and Notes: In preparation for this workshop, a series of studies were conducted. A paper has been published that summarizes some of this work and that was used to inform the organization of the workshop. C. W. Forsberg, B. E. Dale, D. S. Jones, T. Hossain, A. R. C. Morais and L. M. Wendt, "Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries", *Applied Energy*. Vol. 298, (September 2021) <u>https://doi.org/10.1016/j.apenergy.2021.117225</u>

The primary question the workshop addresses is replacing oil with biomass and nuclear energy to create gasoline, diesel and jet fuel. However, there are two other impacts that may be as important: (1) low-cost negative carbon emissions and (2) long-term restoration of soils. Both of these are addressed. Unlike food that requires extraction of minerals to support human life, biofuel production wants only the carbon and hydrogen that come from the sky as carbon dioxide and water. That enables systems that recycle minerals and options that can build up soils over a period of decades (orange lines). It also enables negative carbon emissions without depleting soils.

