
Technology Innovation for Fission Batteries: 
Autonomous Controls and Operation 

11:00 Fission Battery Initiative and Workshop Overview Youssef Ballout (INL)

11:15 Challenges in Achieving Autonomy in Advanced Reactors Nam Dinh/ Linyu Lin (NCSU)

11:40 R&D Opportunities to Achieve Autonomous Operation for Yasir Arafat (INL)
Fission Batteries

12:05 Covert Cognizance (C2): Novel Modeling and Monitoring Paradigm Abdel-Khalik Hany (Purdue)
for Critical Systems

12:30 Break

12:45 Dispatchable, Base-Load Nuclear: The Case for a Fission Anthonie Cilliers (Kairos)
Thermal Battery

1:10 Failures in AI and ML: Insights and Mitigations Charmaine Cecilia Sample (INL)

1:35 Resilient Fission Battery Control: Challenges & Opportunities Michael W. Sievers (JPL/NASA)

2:00 Panel Session



Fission Battery Initiative
Nuclear Science and Technology 

January 13, 2021

Youssef Ballout, Ph.D.
Director of the Reactor Systems Design and Analysis Division



Fission Battery Initiative
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Vision: Developing technologies that enable nuclear reactor systems to function as batteries.

Outcome: Deliver on research and development needed to provide technologies that achieve key 
fission battery attributes and expand applications of nuclear reactors systems beyond concepts that 
are currently under development.

Research and development to enable nuclear reactor technologies to achieve fission battery attributes 



Fission Battery Attributes
• Economic – Cost competitive with other distributed energy sources (electricity 

and heat) used for a particular application in a particular domain. This will enable 
flexible deployment across many applications, integration with other energy 
sources, and use as distributed energy resources.

• Standardized – Developed in standardized sizes, power outputs, and 
manufacturing processes that enable universal use and factory production, 
thereby enabling low-cost and reliable systems with faster qualification and lower 
uncertainty for deployment.

• Installed – Readily and easily installed for application-specific use and removal 
after use. After use, fission batteries can be recycled by recharging with fresh fuel 
or responsibly dispositioned.

• Unattended – Operated securely and safely in an unattended manner to provide 
demand-driven power.

• Reliable – Equipped with systems and technologies that have a high level of 
reliability to support the mission life and enable deployment for all required 
applications. They must be robust, resilient, fault tolerant, and durable to achieve 
fail-safe operation. 
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Fission Battery Workshop Series
• Jointly INL and National University Consortium are organizing workshops across five areas:

− Market and Economic Requirements for Fission Batteries and Other Nuclear Systems
− Technology Innovation for Fission Batteries
− Transportation and Siting for Fission Batteries
− Security Scoping for Fission Batteries
− Safety and Licensing of Fission Batteries

• Expected outcomes: 
− Each workshop outcomes are expected to outline the goals of each fission battery attribute

4
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Challenges in Achieving Autonomy in 
Advanced Reactors

Nam Dinh, Linyu Lin, Edward Chen and Paridhi Athe

Department of Nuclear Engineering
North Carolina State University
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Outline

• Background

• Digital twins and artificial intelligence

• Issues and solution approaches

• Concluding remarks
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New Paradigm in Control Requirements

3
Autonomy Enabled by Digital Twin and Artificial Intelligence

New Operating Conditions:
• Dynamic & drastic load following vs steady state power generation
• Long-term Operating conditions vs yearly maintenance & fuel swap

Different risk profiles: 
• No pumps
• Self contained heat pipes OR submerged in coolant
• Atmospheric Operation
• …

Paradigm Shift in Operation and Control Requirements
• Remote operation 
• Long-term operation & maintenance
• Reduced power
• Dynamic load following
• Different risk profiles

• Reduced reliance for direct human oversight
• Accurate virtual representations
• Dynamic decision-making system
• Continuous monitoring and learning
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Levels of Automation
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Current generation reactors Target range of autonomy for 
advanced reactors

Human Centered Control

Advanced reactors increasingly rely on automation systems in O&M

Automated system monitors the environment



Characteristics of High-Level Automation
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Intelligence à minimal to no reliance on human intervention. Whole system control, implies 
embedded decision-making & planning authority.

Robustness à accounts for uncertainties & unmodeled dynamics. Fault management (avoidance, 
removal, tolerance, & forecasting)

Optimization à rapid response, minimal target deviation & efficient actuator actions

Flexibility & Adaptability à diverse measurements, multiple communication options, & alternate 
control solutions

Higher degrees of autonomy are characterized by greater fault detection and diagnosis, 
more embedded planning and goal setting, learning and even self-healing

R.T. Wood, et al., “An Autonomous Control Framework for Advanced Reactors”, Nuclear Engineering and Technology, 2017



NAMAC as Nearly Autonomous Management and Control
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~Level 3 conditional automation



Nearly Autonomous Management and Control (NAMAC)

• A comprehensive control system to assist plant operations 
• Knowledge integration

• Scenario-based model of plant (systems, success paths) 
• plant operating procedures, tech. specs., etc.
• Real-time measurements

• Digital twin technology
• Power of AI/ML

• NAMAC 
• Diagnoses the plant state
• Searches for all available mitigation strategies
• Projects the effects of actions and uncertainties into the 

future behavior
• Determines the best strategy considering plant safety, 

performance, and cost.

7Digital Twin and Artificial Intelligence are key enabling technologies of NAMAC



Outline

• Background

• Digital twins and artificial intelligence

• Issues and solution approaches

• Concluding remarks
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Digital Twin (DT)

• Digital Twin technology - construct a digital replica (twin) for 
the real reactors and transients for the intended use

• DTs provide insights equivalent to Modeling and Simulation 
(M&S) BUT
• Needs to learn and provide insights faster than the 

development and uses of  M&S

• But DTs are tightly coupled with operation
• Assimilating and adapting to real-time information from the 

operating environment
• Interacting with user for specific objectives

9

• Data-driven model
• Mechanistic model
• Reasoning-based model

• API
• I/O
• User Interface

• Use cases
• Objectives
• Output types

MODEL INTERFACE

FUNCTION

Digital Twin 
Prototype (DTP)

Digital Twin 
Instances (DTI)

Digital Twin 
Environment (DTE)

[1] F. Kahlen, et al., “Transdisciplinary perspectives on complex systems - new findings and approaches”, Springer, 2017

Definitions for DTs [1]

Digital twins need to be adequately modelled for a specific function in 
a specific operating environment



Artificial Intelligence

AI adds meaning to raw data with typical machine learning 
algorithms like artificial neural networks, fuzzy logics, etc.

10

Add 
meaning

Structured and 
processed

Add understanding 
and insights

DIKW Pyramid as a definition and 
representation for intelligent system [1]

NAMAC development process 

Knowledge 
Base

Knowledge 
extraction and 
assessment

Knowledge 
storage and 
usage

Decision-
making

[1] J. Rowley, “The Wisdom Hierarchy: Representations of the DIKW hierarchy”, Journal of information Science, pp. 163-180, 2006



Outline
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• Digital twins and artificial intelligence

• Issues and solution approaches

• Concluding remarks
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Impact of Digital Twin Uncertainty

12

Co
m

pl
et

e 
Ce

rta
in

ty

Level 1 Level 2 Level 3

To
ta

l i
gn

or
an

ce

Scenarios’ 
Future States

A clear future with sensitivity Alternate future with probabilities A multiplicity of plausible 
futures

Digital Twins A single set of digital twins with 
fixed form and parameter

Alternative digital twins with 
alternative forms and parameters 
where weights and uncertainties 
can be sufficiently characterized by 
probability distributions

Alternative digital twins 
with alternative forms and 
parameters where weights 
and uncertainties are 
known imprecisely

Appropriate 
target

High-consequence systems 
where decision making is 
fundamentally based on DTs, 
e.g., quantification or final 
O&M support

Moderate consequence systems 
with some reliance on DTs, e.g., 
preliminary O&M support

Low-consequence systems 
with little reliance on DTs, 
e.g., scoping studies or 
conceptual O&M support

Challenge
Digital Twin uncertainty needs to be evaluated



• DT-DAP to identify major sources of 

uncertainty and to avoid biases due to 

implicitness

• The DAP is conducted iteratively, and the 

corresponding elements are refined until 

an acceptable set of DTs are delivered

Element 1: Refined requirements

Element 2: More complex and more realistic 

knowledge base

Element 3: Different machine-learning 

algorithms, hyperparameter tunning

Element 4: ML uncertainty quantification, 

software reliability analysis
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Digital Twin Development and Assessment Process (DT-DAP)

Adopted from U.S. NRC RG 1.203 “Transient and Accident Analysis Methods”

Challenge in DT-DAP
Digital Twin Trustworthiness needs to be defined 

and evaluated in a transparent, consistent, and 
improvable manner



Trustworthiness Assessment

• For model-based approaches, the trustworthiness, also known as 
credibility, can be technically assessed by six attributes [1]: 
• Representation and geometric fidelity 
• Physics and material model fidelity 
• Code verification 
• Solution verification 
• Model validation 
• Uncertainty quantification and sensitivity analysis

• For ML-based digital twins, the trustworthiness could depend on 
• Accuracy, Security, Robustness, Explainability, Reliability [2]
• and more…

14[1] W.L. Oberkampf, et al., “predictive capability maturity model for computational modeling and simulation (SAND2007-5948)”, Sandia National Laboratory, 2007
[2] NIST, “Fundamental and applied research and standards for AI technologies (FARSAIT)”,  2018

Challenges in DT Trustworthiness Assessment
• DT trustworthiness needs to be evaluated by integrating information 

(evidence) from different sources and heterogeneous types of data
• Complex relations, priority, and trade-off between different attributes of 

Trustworthiness



Trustworthiness Assessment

• Accuracy (VVUQ) is one of the major 
attributes of trustworthiness 

• The trustworthiness assessment 
framework is developed based on 
assurance case that aims to

• Justifies if DT is acceptably mature 
in a structured argument, supported 
by evidence, for a specific 
application in a specific operating 
environment

15

Trustworthiness Assessment Framework

Challenges in DT Assurance Case

• Define DT maturity

• Collect and integrate evidence

• Online maturity evaluation and real-

time deviation detection

DT Accuracy by 

maturity

Scale/Coverage 

Assessment

Algorithm 

Verification

Uncertainty 

Quantification
Validation

Data quality, 

scaling, and 

relevance

Learning 

algorithms, 

optimization

Validation 

metrics, 

validation 

results

Sensitivity 

analysis, UQ 

results

Goal: A claim or statement 

related to the objective of 

the problem of interest

Solution: reference to 

evidence or facts that 

support goals in GSN

DT 

Trustworthiness

Security Explainability … 



Predicted Capability Maturity Quantification (PCMQ)

• Similar techniques, named predictive capability maturity quantification by Bayesian network (PCMQBN), are 
developed to evaluate the adequacy (maturity or credibility) of a computational fluid dynamic (CFD) code in 
simulating an external-flooding scenario [1]

16

Transfer the argument 
to a belief network

[1] L. Lin, N. Dinh, “Predictive capability maturity quantification using Bayesian network”, Journal of Verification, Validation, and Uncertainty Quantification, 2020

Simulation Adequacy =
{Scenario, Belief, Maturity Levels}

Challenges in adapting PCMQ to DT 
trustworthiness assessment

• Quantifying evidence and maturity
• Dependency among different evidence and 

goal nodes
• Relating accuracy results with risk analysis



Summary

• Advanced Reactor design offers opportunity and challenges for advanced control strategies 
• The ideal levels of automation are to be adapted, but expected to be high-level, risk-informed and data-driven

• Characteristics of autonomy are largely conceptual, and their relations/trade-off need to be evaluated

• From NAMAC’s experience, digital twin and artificial intelligence are key enabling technologies of 
autonomous control systems
• Digital twins’ uncertainty presents a major challenge, and we suggest dealing with it through a formal framework

• In the digital twin development and assessment process, the trustworthiness is a critical element
• It is a challenge to collect and integrate heterogenous types and sources of evidence, and we suggest an accuracy 

assessment framework by software assurance case
• We suggest adapting the predictive capability maturity quantification (PCMQ) framework for assessing the maturity 

of DTs and AI.

17
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Fission Batteries
R&D Opportunities to achieve Autonomous 
Operation



Autonomous Operation 

• Autonomous control systems are 
designed to perform well under significant 
uncertainties in the system and environment 
for extended periods of time, and they must 
be able to compensate for system failures 
without external intervention” 

Vs.
• Automation, which is often defined as a 

process or procedure performed with 
minimal human assistance



Why seek autonomous operation? 
• Operators for a fission battery is a significant cost driver
• Staffing requirements during operations

− Constraint: design, regulations, end user
− % contribution to LCOE by # staff

MWe # staff $/hr $/MWh LCOE % LCOE

Max CAPEX of 
Autonomous 

systems *
1.5 1 100 67 $                    450 15% $4.3M
1.5 2 100 67 $                    450 30% $8.6M
3 1 100 33 $                    450 7% $4.3M
3 2 100 66 $                    450 14% $8.6M

10 2 100 20 $                    200 10% $8.6M
30 2 100 3 $                    200 2% $8.6M

• Maximum CAPEX for autonomous systems is independent of reactor size
- Autonomous system replaces hourly rate of staff for x amount of years

*Assuming 5 years of operation



Operation & Maintenance in Nuclear Power Plants
• Nuclear reactors are complex systems that utilize sophisticated controllers, 

trained operators to achieve desired performance for 
− Operability (match demand and supply of electricity) 
− Safety (ensure no radiological impact to people/environment) 

• Functions of “people” in today’s nuclear reactors: 
− Reactor Startup & Shutdown 
− Evaluate Plant Performance
− Fault-detection & diagnosis
− Emergency Operation 
− Fuel reload
− Load Management
− Demand Management
− Maintenance
− Repair



Architecture Schematic of Autonomous Controller

Degrees of 
Intelligence



Architecture Schematic of Autonomous Controller

Degrees of 
Intelligence



What does it mean for 
nuclear reactors? 



Levels of Autonomy



Fission Batteries

Microreactors

Levels of Autonomy

• Gen I Microreactors

• Staffed reactors with remote 
monitoring

• Unstaffed reactors, with remote 
monitoring & full control 

• Staffed reactors, with remote 
monitoring & control 

• Unstaffed reactors, with remote 
monitoring & partial control 

• Unstaffed reactors, with remote 
monitoring & no operator control 



Who are the end users of autonomous fission 
batteries? 

Industry/DOE/DoD 
Demo*

Eilson*
AFB

Remote 
Applications* 

Grid-Edge* Centralized 
Grid*

Microreactor Markets: 

Market Adoption Life-Cycle

microreactors Fission batteries

* Not validated



Today’s Challenges of Autonomous Operation  
• Real autonomous control systems are only feasible

− with the availability of cheap sensors, 
− the capacity to handle enormous amounts of data, and 
− the processing capacity and methods to perform the necessary decision algorithms
− Cyber threats  especially with remote control 

• Significant regulatory hurdles to license for Autonomous operation 
− Environment: High consequence to failure
− Performance: Lack of testing data
− Reliability: Manually operated microreactors/fission batteries must be deployed first

• Some suggest that conventional control has a better, more established track record than 
techniques from intelligent control, which are relatively new and in a very early stage of 
development. 

R&D Testing Regulatory 
Approval

Commercial 
Adoption



Site: TREAT Storage Pit (8’x12’x10’) and TREAT control room

Control Room Storage pit  T-REXC
TREAT microReactor EXperiment Cell 

• Thermal Power- 100 kWth
• Electrical Output ~20 kWe
• Max High Grade heat ~ 45 kWth @ 450

◦
C

• Max Low Grade heat ~ 75 kWth @ 50 ◦C
• Modified TRIGA fuel- UZrH1.7 (made in INL)
• Inspired by SNAP 10A core geometry: 36 pins
• Four helium Stirling engines @ 400-500 C inlet T
• Air is ultimate heat sink for primary and decay heat 

removal

MARVEL- Testbed for Autonomous Control Systems



MARVEL Operation 
& Maintenance

• Current Criticality Target: June 2022
• 4 years operation; 
• < 50% capacity factor
• Manual Operation; 2 operators (SRO, 

RO)  
• Remote monitoring  (power only) 
• Microgrid Controller & renewable 

generation  interface
• Planned maintenance- minimum
• Unplanned maintenance/repairs-

spares





R&D Pathway to achieve Autonomous Operation 
using MARVEL 

Remote 
Monitoring & 
Control

Operator 
control 

Machine 
Control 

Phase 0 No Full No

Phase 1 Yes Full No

Phase 2 Yes Partial Partial 

Phase 3 Yes No Full

To achieve full autonomous operation, we have to…

Start Small, Dream Big 



R&D Pathway to achieve Autonomous Operation 
using MARVEL

Remote 
Monitoring & 
Control

Operator 
control 

Machine 
Control 

Phase 0 No Full No

Phase 1 Yes Full No

Phase 2 Yes Partial Partial 

Phase 3 Yes No Full

To achieve full autonomous operation, we have to…

Start Small, Dream Big 
Advance 
Sensors

Fuzzy Logic

Digital Twin

Artificial 
Intelligence

Reduced 
Order Models

Operation Functions
• Reactor Startup & 

Shutdown 
• Evaluate Plant 

Performance
• Fault-detection & 

diagnosis
• Emergency Operation 
• Fuel reload
• Load Management
• Demand Management
• Maintenance
• Repair



Phase 2: Partial Operator Function (Fuzzy Logic)  
• Example: 

− Reactors have design limits on structural 
materials, fuel, coolant, etc

− In a postulated accident condition, if these 
design limits are reached, reactors need shut 
down to prevent any catastrophic failure

− With fuzzy logic, we don’t necessarily have to 
shut down the reactor, rather operate at lower 
power or avoid thermal cycling

• Benefits: Make better/faster safety & operability 
decisions, Improve availability  reduce operator 
functions

• Some reactors like MARVEL are ideal to test 
fuzzy logic, because of safety pedigree, i.e. 
strong reactivity feedback



Phase 2: Partial Operator Function (Digital Twin)  

• A digital twin is a digital/virtual copy of physical asset or product

Physical asset Digital twin

1. Data acquisition

4. feedback

2. Data processing

3. Predict: 
• optimized 

operation
• maintenance



Phase 2: Partial Operator Function (Digital Twin)  

• A digital twin is a digital/virtual copy of physical asset or product

Reference: https://www.rssb.co.uk/what-we-do/insights-and-news/blogs/digital-twins-and-the-railway-one-framework-many-implementations
Physical asset Digital twin

What is 
there?

What is it 
doing?

What is it 
doing NOW?

What might it do 
IF ___ changes?

What might is it 
going to do?

1. Data acquisition

4. feedback

2. Data processing

3. Predict: 
• optimized 

operation
• maintenance



Phase 3: Neural Network

Current Applications: 
Live Google Translate 
using camera    

Neural 
Network 



Phase 3: Neural Network

Current Applications: 
Live Google Translate 
using camera    

Neural 
Network 

• Can we use neural networks to teach a 
reactor to make instant decisions?

• Can we make an AI based Instrumentation 
& Control system & replace people? 

• Can we ever obtain an operating license of 
a fission battery from NRC? 



Thank you!

What other technologies and development efforts are
needed to achieve Autonomous Control  fission batteries?

Contact Information 
Yasir Arafat

yasir.arafat@inl.gov
412-736-4886 (cell) 

208-526-3074 (office)
https://www.linkedin.com/in/yasirarafatinl

https://www.linkedin.com/in/yasirarafatinl
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Covert Cognizance (C2):
Novel Modeling and Monitoring Paradigm for 

Critical Systems 

Hany Abdel-Khalik, Associate Professor, 
School of Nuclear Engineering

Fission Battery Workshop, Jan 20, 2021



Computerized Decision Making Capability @ Center 
of 21st Science and Engineering Challenges

Artificial 
Intelligence

Critical 
Infrastructures

Digital 
Twin

Condition 
Monitoring

Information 
Technology

Operational 
Technology

Security

https://cipher.com/blog/the-16-sectors-of-critical-infrastructure-cybersecurity/
https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1923920



C2 Paradigm

› How to develop global 
self-awareness?

– Pinpoints problems in a 
non-probabilistic manner.

– Cannot be evaded by 
Adversarial AI

I1 O1

S1

I2 O2

S2

Ii Oi

Si

IN ON

SN



Current R&D efforts:

› Digital Twinning, providing unprecedented levels of details 
for diagnosis and control
– Challenge: Digital Twins to have unavoidable uncertainties
– Challenge: Modeling of critical systems is well-understood

› AI/ML, seeking to develop continuous learning platform for 
integrating digital twins models with measured data
– Challenge: It is not clear when and how AI fails



C2 Inspired by Active Monitoring

To find out what happens to a system when you interfere 
with it, you have to interfere with it 

(not just passively observe it). 

George Box, 
“Use and Abuse of Regression,” Technometrics, Nov. 1966



Passive vs. Active Monitoring

https://slideplayer.com/slide/7395148/

Straightforward active monitoring algorithms are not 
suitable for unattended operation, because they were 

not designed with adversarial scenarios in mind.



State-of-the-art Monitoring vs. C2 Paradigm

Survival Bias
Data analyzed are initially selected based 

on some unquestionable criterion

State-of-the-art
(Dominance) often selected as criterion 

for majority of AI techniques

Patterns with weaker Impact (i.e, higher order 
patterns) recently proposed to improve 

classification-ability of AI techniques

Zero-Impact Patterns (Non-Patterns) 
treated as noise.

Provide huge space to store cognizance 
(self-awareness) information that blinds 

AI techniques



State-of-the-art Monitoring Paradigm

Ph
ys

ic
al

 S
ys

te
m

 o
r M

od
el1x

2x

ix

Nx

1yδ

2yδ

iyδ

4yδ

predy

measy

meas pred inf
i iy y x yδ δ− = ∑

Many solutions exist, described 
probabilistically

Mathematical criterion enforced to 
select single solution; criterion is 
system specific and cannot be 
generalized for multi-physics 
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Inference AnalysisDiscovery/Learning Mode

Superposition-based Inference/Discovery Algorithms 
limited in pinpointing cause-effect relationships



Unattended Operation: Problem Setup

Digital Twin

Physical System

Images from RSC Publishing – Royal Society of Chemistry, EnggCyclopedia, Icons8, Free Icons Library
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Physical 
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Unattended Operation – Uncertainty Challenges (1)

Digital Twin

Physical System

PredictionsControl 
Commands

Measurements

Control & 
Decision-Making

Optimum Control Commands and Diagnostics

Modeling 
Uncertainties

Faulty SensorsFaulty Actuators Faulty Equipment

Physical 
Sensors
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System Disturbances



Unattended Operation – Integrity Challenges (2)

Digital Twin

Physical System

PredictionsControl 
Commands

Measurements

Control & 
Decision-Making

Optimum Control Commands and Diagnostics

Data Integrity

Data 
Integrity

Physical 
Sensors
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Data 
Integrity

Model 
Integrity

Algorithms 
Integrity

PLCs 
Integrity



Unattended Operation – Uncertainty Challenges (1)

Process Exhibiting 
Unknown 

(to-be-discovered) 
Behavior, e.g., 

Black-Box Model, 
Physical Process

Many Known 
(considered) 
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Many Unknown 
(unconsidered) 

Influencers

Observable

K∆
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Unattended Operation – Uncertainty Challenges (1)

Process Exhibiting 
Unknown 

(to-be-discovered) 
Behavior, e.g., 

Black-Box Model, 
Physical Process

Many Known 
(considered) 
Influencers

Many Unknown 
(unconsidered) 

Influencers

Observable

OO K O U
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∂

+
∂

∆ ∆
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∆

K∆

U∆

O∆

Discovery Model

OO K
K

ε∂
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∂
+

Premise is that the U 
influences average out

Many plausible ∆K satisfy forward discovery model, 
forcing inference analyses to be probabilistic

Forward Analysis

Inference Analysis



Unattended Operation – Uncertainty Challenges (1)

› Implications:

– Discovery Models are vulnerable to 
integrity attacks via careful data 
manipulation

– Inference analysis requires many 
samples (or high fidelity failure models) 
for high success rate (i.e., low FP/TN)

– Inference analysis performance more 
vulnerable to integrity attacks, 
decreasing its reliability for fault 
identification and isolation

Probabilistic Fingerprinting

Discovery/Learning



Gatekeeping Fingerprint Auditing

Unattended Operation – Integrity Challenges (2)

Medium.com, PaintShop Pro, CyberExperts.com
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Paradigm Shift needed, shifting from overt access-prevention to 
covert zero-impact-while-under-attack methods



Covert Cognizance (C2) Paradigm
How to covertly develop global self-awareness?
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Information about multiple sub-systems can be 
uniquely derived as features from a given sub-

system state and its I/O data stream.

Global (System-wide) Awareness



Covert Cognizance (C2) Paradigm
How to covertly develop global self-awareness?

I1 O1

S1

I2 O2

S2

Ii Oi

Si

IN ON

SN

Information about multiple sub-systems can be 
uniquely derived as features from a given sub-

system state and its I/O data stream.

( ),i i i iO S I= Ω

Global (System-wide) Awareness

Existing Awareness Paradigm

Local Awareness:

Existing paradigm extends local reach to 
multiple sub-systems via Correlation-based AI, 
forcing explainable, causal, inference analyses 
to be probabilistic



Covert Cognizance (C2) Paradigm
How to covertly develop global self-awareness?
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Decoy C2 information (designed to be 
discoverable via AI) to track attackers and 

determine their goals.
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Why C2 Possible? 
› Complex Systems are reducible, implying that:

– Dominant behavior can be described using small no. DOFs,
– Leaving huge number of “un-used” noise-dominated DOFs, that 

can serve as carrier variables

Whole System

Sub-System A Sub-System B

Dominant DOFsDominant DOFs

Noise-Dominated DOFsNoise-Dominated DOFs



Covert Cognizance (C2) Example
› Cognizance: The core and the SG 

are mutually aware of each other state 
functions, i.e., they carry information 
about each other. 

› Covertness: The information is 
embedded in the process variables via 
randomized mathematical 
transformations

› Embedded in real-time along noisy 
non-observable components for 
zero-impact on system state and 
control strategies.

› One-time pad representation 
immune to AI learning. Generated using Dymola



Covert Cognizance Example
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Other Applications for C2

› Allow software to develop cognizance about its 
own execution history

› Employ C2 to stop software reverse-engineering 

› Develop born-secured ROM models



Covert Cognizance (C2) Paradigm
› Paradigm to develop global (system-wide) self-awareness 

in a covert manner without impacting system performance
– Relies on active rather than passive monitoring
– Fingerprint-based vs. Probabilistic-Correlation-based Awareness
– Embedding is a form of “active interference”; however ROM 

research proved that complex systems have too many redundant 
noise-dominated degrees-of-freedom (denoted by non-patterns), 
representing perfect carrier of C2 information. 

– Embedding C2 information along non-patterns ensures zero 
system impact, does not require additional carrier variable, 
ensures non-discoverability via Adversarial Intelligence
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Kairos Power’s mission is to enable the world’s transition to clean energy, 
with the ultimate goal of dramatically improving people’s quality of life 
while protecting the environment.

In order to achieve this mission, we must prioritize our efforts to focus on a clean 
energy technology that is affordable and safe.



Copyright © 2020 Kairos Power LLC.  All Rights Reserved.
No Reproduction or Distribution Without Express Written Permission of Kairos Power LLC.

Conventional Nuclear Power Plant
• High Capital cost, long construction times incurring interest during construction.

• Low fuel cost

• Perfect for baseload power supply

• High capacity-factor of ~92% provides optimal Levelized Cost of Electricity (LCOE) for High 
Capex low Opex power plants.

• Allows power ramping of up to 10% per minute.

• Why energy storage or a fission battery?

3
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Net Demand: California ISO
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California 24-hour electricity supply sources

5

• Nuclear power provides baseload supply of 1.56GW (6-12% of 
demand)

• Geothermal provides baseload supply of 879MW (4-7% of 
demand)

• Biomass provides baseload supply of 535MW (2-4% if demand)

• Hydro provides flexible supply (5-10% of demand)

• Wind power provides intermittent seasonal supply

• Solar power provides variable supply during the day peaking at 
up to 43% of demand.

• Natural gas fills in the gaps up to 73% of demand during peak 
low solar times.

• What are the low carbon alternatives to fill the gaps?
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Implications of current and future grid supplies
• Baseload supplies will be limited to 20-25% of demand:
◦ Low carbon options are Nuclear, Hydro, Geothermal.
◦ Rest of demand will be from flexible dispatchable sources with intermittent and variable wind and solar.

• Flexible supplies lowers the capacity factor, increasing LCOE.
◦ Low Capex, high fuel cost sources work well as flexible supplies.
◦ No low carbon flexible supply options universally available.

• More penetration of intermittent variable sources, we will see more curtailment of supply and 
negative supply value during low demand times.
◦ Justifies cost of storage and dispatch during peak demand times.

• Grid needs affordable, clean, dispatchable energy sources.

6
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Impact of Molten Salt “Battery”
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Implications of using a fission thermal battery
• Increases capital cost – molten salt storage battery comes at a cost – LCOE goes up.

• Increases capacity factor when used with intermitted sources – LCOE comes down.

• Provides energy storage for intermitted sources during high supply low demand times –
increases value of supplied electricity unit.

• Problem to solve: The generation/demand trilemma.

9
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Thank You
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Introduction & Background
• AI – technology that performs tasks 

which mimic human intelligence [1].
• Machine learning (ML)

− Powers AI
− Algorithms capable of generalizing 

lessons learned from a limited data 
set to allow for abstraction of 
lessons to a larger environment [2].

2



Problem

• AI/ML introduces problems of a breadth and 

nature that are difficult for humans to 

envision.

− Traditional security problems

− AI/ML unique problems 

− Rapidity 

3
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Specific Problem

• Problem 1: Data corruption
− Description: This group of 

attacks includes data 
poisoning, data 
perturbations, environmental 
corruptions, side effects, 
common corruption.

− Effects
• Misclassifications
• Inaccurate results

5



Explanation
Data corruption

Data poisoning: Attacker 
contaminates training 
data. Introduction of a 
significant amount of 
erroneous data to trick the 
ML algorithm to think the 
data is normal.

6



Explanation

Data corruption 
Data perturbation: 
Attacker modifies a query 
to attain a desired 
response. Introducing an 
electronic disturbance 
during training to change 
the transcribing process.

7



Explanation

Data corruption:
Environmental corruption: 
By making a change to 
background data. Shown 
to fool autonomous 
vehicles

8



Explanation
Data corruption:

− Common corruption: 
Changes to lighting, 
angles, zooming, noisy 
images.  Example: 
image recognition 
software becomes less 
accurate when light 
changes, foggy 
conditions etc. 

9



Explanation

Data corruption:
− Side effects: Seen when 

the environment may 
interfere with the goal of 
the system. System 
disrupts the 
environment, e.g. robots 
running over plants in 
the garden to scare 
intruders.

10



Background – Information Security & Information 
Theory

Information Security – McCumber Model Information Theory

11



Additional context

• 6 processing meta states
− Start-up
− Idle
− Normal
− Busy
− Failing
− Failed

• Calendar profiles
− Holidays
− Weekends
− Workdays 
− Time of year

12



Resilient Data examples

• Network data
− Historical SIEM data 
− QoS data (capacity, bandwidth usage, # of connections, fluctuations, state 

data etc., client and server hardware data.)
• ICS data

− ”Physics” data obtained by sensors– (temperature, state, flow rate, valve 
position, container info etc.)

• Specific-based intrusion detection vs anomaly detection

13
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Specific Problem
• Problem 2: System 

corruption 
− Description: 

Reprogramming ML, 
malicious ML provider 
recovering training data, 
reward hacking, 
backdoor ML, software 
dependencies 
exploitation, AI supply 
chain attacks

− Effects:
• Misclassification
• Improper groupings
• Data loss
• DoS

15



Explanation
System corruption 

Description: 
Reprogramming ML –
Reprogram ML system for 
an unintended purpose. 
Specially crafted query can 
be re-programmed to 
perform a task outside of 
the original purpose.

16



Explanation
System corruption

Description: Malicious ML 
provider recovering 
training data,  Malicious 
provider queries client 
model recovering 
customer training data. 

17



Explanation
System corruption 

Description: Reward 
hacking.  Algorithm reward 
system reward gap 
between stated and true 
rewards. Typically done in 
reinforcement learning.

18



Explanation
System corruption

Description: Backdoor ML. 
ML provider has back 
doors into algorithms 
allowing  for various 
assorted problems such 
as time bombs, logic 
bombs, etc. 

19



Explanation
System corruption 

Description: Software 
dependencies 
exploitation, Traditional 
software exploits, e.g. 
buffer overflows, etc.

20



Explanation
System corruption

− Description: AI supply chain 
attacks. Attacker 
compromises ML models 
during downloading for use.

21



Research Area:  Systems Resilience

• Creating Resilient Systems
−Red Teaming AI
−Malware discovery in binaries
−Self-healing solutions
−Supply chain research

22
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Explanation

• Problem 3: Model corruption

Description: Membership 
inference, model stealing, model 
inversion, distributional shifts

Effects: 

− Data loss

− Algorithm manipulation

− Algorithm anticipation

− Data grouping manipulation

24



Explanation

Problem 3: Model corruption
Description: Membership inference –

attacker determines whether a record 

is part of the training data used.

Attackers make accurate predictions 

based on specific attributes.

25



Explanation

Problem 3: Model corruption
Description: Model stealing. 

Attacker recovers the model 

through carefully crafted legitimate 

queries, can rebuild a twin model, 

making possible response 

prediction. 

26



Explanation

Problem 3: Model corruption 
Description: Model inversion - attacker 

discovers private features used in the 

model through careful queries.

Attackers recover private training data, 

allowing for reconstruction of complete 

outputs.

27



Explanation

Problem 3: Model corruption
Description: Distributional shifts. 

System is tested in one 

environment but deployed in a 

different environment and the 

system can not adjust accordingly.

28



Research Area: Proposal for Model Resilience

• Fingerprinting and countering fingerprinting efforts
−Time
−Queries
−Enforcement of Byzantine behaviors
− Inconsistent deception

29



Specific Problem
Problem 4: Known unknowns 
and unknown unknowns

− Description: Natural adversarial 
examples, overfitted models, 
incomplete testing, MUAI.

− Effects: 
• Algorithms prioritization 

schemes are inappropriate or 
inaccurate

• Algorithms behave in 
unanticipated, unintended 
manner

• Algorithm confusion
30



Explanation

• Problem 4: Known unknowns and 
unknown unknowns
− Description:  Overfitted models

31



Explanation

• Problem 4: Known unknowns and 
unknown unknowns

Description: Incomplete testing.

32



Explanation

• Problem 4: Known unknowns and 
unknown unknowns
− Description: MUAI.

33
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Research Area: Explainable AI (XAI)

• Characteristics of XAI
−Evidence based output
−User specific explanation
−Consistently accurate
−Knowledge limits
−Resilient

35



Conclusions

• AI disruption will transform many of the workflows in our 
current lives.

• AI disruption will introduce unforeseeable problems.
• Humans will need to remain in the loop for the 

foreseeable future. 
• Significant research into all aspects of intelligence.

36



Questions & 
Answers
Contact: Char Sample
e-mail: Charmaine.Sample@inl.gov
Cell: 301.346.9953
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SO THAT WE’RE ON THE SAME PAGE…

• Resiliency is a property associated with system behavior
• Enables continued useful service despite disruptive events

• Three general categories of disruption: 
• External disruption – caused by factors outside the control of the system such as a natural 

disaster
• Systemic disruption – a service interruption due to an internal fault
• Human agent-triggered disruption – the result of human error or misuse of the system

• Resilient systems are trusted, adaptable, and effective in spite of unknown-
unknowns

• How do we protect against unpredictable disruptions if we don’t know what to look for?



RELATIONSHIP TO FAULT-PROTECTION

Unpredictable
Disruptions

Predictable
Disruptions

Inward
Looking

Outward
Looking
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TYPICAL RESILIENCE CURVE
• System performance is normal until a disruptive event 

occurs

• System performance drops to a minimum until recovery 
occurs

• If recovery doesn’t occur or isn’t successful, then system 
drops below acceptable performance

• System may recover to full performance, may end up 
degraded until repair actions take places, or may 
collapse

• Loss of resilience 𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is approximated as the integral 
of the degradation over the interval [𝑡𝑡𝑑𝑑 , 𝑡𝑡𝑛𝑛]

𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝑡𝑡𝑑𝑑

𝑡𝑡𝑛𝑛
𝑃𝑃𝑙𝑙 𝑡𝑡𝑙𝑙 − 𝑃𝑃 𝑡𝑡 𝑑𝑑𝑡𝑡

𝑡𝑡𝑛𝑛𝑡𝑡𝑑𝑑 𝑡𝑡𝑣𝑣



RESILIENCE: 
COMPONENTS AND RELATIONSHIPS

Source: Madni and Jackson, 2009)

Resilience: Avoid, withstand, adapt 
to, recover from perturbations & 
surprises including unknown-unknowns



KNOWN AND UNKNOWN UNKNOWNS

• Known unknowns are potential risks that we are aware of and plan for
• Most spacecraft are protected against known unknows

• Safehold, redundancy and cross-strapping, fault containment, error correcting codes, …

• Analyses determine risk likelihood and impact
• FMECA, FTA, FFA, PRA…. 

• Unfortunately, many mission-ending spacecraft failures result from overlooked or 
incorrectly assessed risks…

• Unknown unknowns are so completely unexpected events that would not be not 
considered

• “I knew failures were possible so I included redundancy, but I just didn’t think my 
subsystem would fail there!”

• Subsystem engineer’s statement at a spacecraft failure review board



TRADITIONAL FAULT-PROTECTION

• Traditional fault protection focuses on risks we know or suspect
• Usually implemented hierarchically in which higher-level protection covers potential gaps 

in lower-level protection
• Each higher level of protection takes more drastic measures to stabilize a fault condition

• We often use “safety-net” measures at the highest level, e.g., puts a spacecraft into survival 
operation

• In most cases, actions taken by fault-protection do not restore operation
• Recovery is usually under ground control... But... 

• An issue often overlooked in traditional is time-to-critical-effect (TTCE) - a factor of fault 
coverage (the probability that a system recovers given that a fault has occurred)

• → Fault responses must complete within TTCE or permanent damage or degradation occurs



TIME-TO-CRITICAL-EFFECT EXAMPLE

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 ∩ 𝑇𝑇𝑇𝑇𝑇𝑇 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
= 𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡)
= 1 − 𝑐𝑐 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡)



FISSION BATTERY CONTROLLER RESILIENCE CHALLENGES

• We can assume that some faults are managed by conventional fault-
protection (stabilization & ground recovery), but others will need more urgent 
attention, and some might be unknowable – until they happen

• We also know that not all states or parameters are observable – so knowing 
system state with certainty isn’t always possible

• Summarizing the challenges:
• Unknown-unknowns
• Potentially short TTCEs that are inconsistent with ground intervention
• Partial observability
• And one we didn’t mention yet: taking actions may make bad situations worse



OVERCOMING RESILIENCE CHALLENGES

• Several methods have looked at creating resilient systems that similar to 
feedback control systems

• Sensing is the easy part, but how do we plan and what actions should we 
take?

Sense Plan Act



IMPLEMENTING RESILIENCE USING REINFORCEMENT 
LEARNING

• RL is a machine learning construct in which software learns which actions to take 
actions based on maximizing a cumulative discounted reward function

• Future actions have discounted value due to uncertainty in whether they can be used 
and in their effectiveness

• E.g., a Markov Decision Process (MDP) defines an environment for reinforcement 
learning (RL)

• All forms of RLs can be represented as an MDP

RL Cycle



MARKOV DECISION PROCESS (MDP)

• A MDP comprises:
• A set of possible states, 𝑆𝑆
• A set of possible actions, 𝐴𝐴
• A reward function 𝑇𝑇(𝑟𝑟,𝑓𝑓)
• Transition probabilities, 𝑇𝑇, that depend on state and action
• A belief state that is the probability distribution over the system states

• Markov property: the effects of an action taken in a state depend 
only on the current state and not previous states

• Two types of actions:
• Deterministic actions: 𝑇𝑇: 𝑆𝑆 𝑥𝑥 𝐴𝐴 → 𝑆𝑆 for each state and action
• Stochastic actions: 𝑇𝑇: 𝑆𝑆 𝑥𝑥 𝐴𝐴 → 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃(𝑆𝑆) for each state and action define a 

probability distribution over next states, i.e., 𝑃𝑃(𝑟𝑟′|𝑟𝑟,𝑓𝑓)



POLICY

• A policy, π, is a mapping from 𝑆𝑆 to 𝐴𝐴, 𝜋𝜋: 𝑟𝑟 ∈ 𝑆𝑆 → 𝑓𝑓 ∈ 𝐴𝐴
• I.e., when in state 𝑟𝑟, execute the action, π(𝑟𝑟)

• An action transitions the system to state 𝑟𝑟′

• Important caveat: this assumes full observability, i.e., we know the 
state we’ve transitioned to

• The “goodness” of a policy can be established for deterministic 
actions by totaling the discounted rewards from state s – but that 
might require an infinite number of iterations

• For stochastic actions we evaluate the expected reward – which 
might also be infinite



FINITE HORIZON BELLMAN EQUATIONS

• After determining an optimal policy then the Markov model is readily 
analyzed

• The nuance though is that we now take an action based on the state 
we’re in

• If we find ourselves either in a known bad state or heading into a bad 
state, then our actions must create a trajectory either to a working state 
or to a safe state

• The optimal policy may change with time if we discover that actions do 
not help

• We might have made the wrong assumptions up-front
• The system, usage, environment, disruptions… may have changed

• That is, we must adapt to new realities by evaluating the effectiveness 
of actions



PARTIAL OBSERVABILITY

• A Partially Observable Markov Decision Process (POMDP) is a MDP comprising 
hidden states and observables

• State transition and emission probabilities as a function of actions taken are 
learned during system testing and updated during operation

• E.g., using the Viterbi Algorithm
• We want to know that the system transitions to the belief state arrived at after taking an 

action is “correct”
• But since “correct” cannot be determined with certainty, what we want to know is whether 

the Pr of transitioning to the expected state is >> than any other state



CONCEPTUAL CONTROL ARCHITECTURE

• State space explosion is a major issue

• Approximations, paring, hierarchies, and heuristics help
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